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The basic idea of this study is that from local information based on electoral ward area  
about frequency of disease and total number of children it is possible to derive a map of  
risk over the entire region, using geostatistical methods and in particular the cokriging  
prediction scheme. Every area is considered as a point (its centroid), so that the  
geostatistical problem is one of predicting points on a uniform grid using irregularly  
distributed data points. The specific problem is that the characteristics of the frequency  
distribution are different from those of the risk, and in particular it is needed to make  
predictions on one variable (risk) using correlation information concerning another  
variable (frequency). A second problem, related to the database used, concerns the  
adoption of electoral wards as spatial location of healthy children and as reference areas  
for the analysis, while the disease occurrence data is available with the precise address for  
each child. The first problem is solved statistically, the second with a sub-optimal  
solution.    

Geostatistics has been originally applied in mining problems, such as in the 
prediction of ore distributions, but now is applied to spatial data in general, as 
this case confirms. The general initial condition for a geostatistical analysis is to 
have sparsely sampled point with a known value, belonging to a variable that 
can be described by a variogram, a graph depicting the correlation of a variable 
at a range of distances. Such variogram can be used for predicting estimates of 
the variable in specific points, which are unbiased weighted averages of the data 
with minimum variance.



The study of the distribution of human diseases is in this case devoted to the rare 
non-contagious cancer among children. The principle is to identify the pattern of 
the disease and to seek the factors in the environment that are responsible for it, 
with the objective of relating the risk of developing the disease to environmental 
“triggers”. The assumption is that if the risk is dependent on environmental 
factors, then it might show a degree of autocorrelation that can be analyzed by 
geostatistical methods. Such methods are modified versions of those used in the 
earth sciences: in fact, the values of the variables are not volumes of materials but 
the number of individual cases in a span of time, and the actual location of the 
population is approximated to some known reference coordinates (i.e. the 
electoral wards, see below). Both issues require special care in the application of 
geostatistical methods.

Cancer amongst children is a rare disease (about 120 per million) but serious, and 
a study of its spatial distribution can inform us about the ways to limit the 
problem. Previous analyses have found concentrations of child leukemia around 
nuclear installations, and investigations have been carried out to discover the 
causal links of this pattern. One solution is to verify if there are alternative 
causes, and this requires a careful mapping of the disease that is in the end to be 
compared to the distribution of environmental factors. Research has concentrated 
in the identification of clusters in the spatial pattern, with two main approaches: 
the first is based on cell counts and includes Poisson probability mapping, with 
results depending on cell size and independent of spatial correlation; the second 
is based on the distance between cases and on nearest neighbor analysis. Both 
approaches are considered weak by the authors when applied to this kind of 
data, supposedly because the former in particular does not consider geostatistical 
analysis of correlation as a way to extract more information from the data.

In the hypothetical case that there are no point sources of the disease, the 
tendency of the disease to cluster might not be supported by any evidence. One 
of the basic assumptions of the paper is that it is better to map the risk of 
developing a disease than the actual incidence of the disease. In other words, 
when we try to verify alternative causes of the disease other than point sources 
(e.g. nuclear installations), we need to consider that such point sources might not 
exist, thus invalidating any clustering hypothesis. Also we need to shift our 
attention to risk rather than to a study of disease occurrence pattern, because risk 
might show more interesting patterns than disease occurrence alone (and the two 
are related, see below). 



The study was based on the extraction of the records of disease incidence among 
children for the period 1980-1984 in the West Midland Area of England, for a 
total of 595 cases. For each child diagnosed there is an address with postcode, 
from which a pair of coordinates can be obtained (the usual problem of imprecise 
rural areas post codes applies here). The resulting map of incidence shows a 
concentration of cases in urban areas, mainly because it is where children live. 
The objective here was to explore the data for spatial autocorrelation , and then 
estimate the risk, taking in account the varying density of population, and 
mapping the results to identify meaningful patterns.

The paper presents a brief review of geostatistical theory comprising the basic 
model of a random variable expressed in terms of mean and random variation. 
Its variance defines the semivariogram which is a function that relates the 
semivariance to a specific lag h. A function for covariance at a specific lag is also 
obtained using the value of the variable at (x) and (x+h), and its mean.

All children are exposed to the risk of developing cancer, and this risk is a 
regionalized random variable R(x) that can vary from place to place. The overall 
risk is the number of children who do develop cancer divided by the total 
number of children in the Region. The estimation of local risk is based on the 
local rate of incidence, frequency, which is, in this case, the number of cases in 
the electoral ward divided by the number of children in the ward. The data are 
indexed according to the centroids of the electoral ward. There is no better 
information available about the location of healthy children than the subdivision 
by electoral ward, so that the precise information about sick children cannot be 
used in the analysis. Preliminary data analysis shows that a Poisson distribution 
does not represent the counts of the occurrences of the disease, even if the 
disease is rare, mainly because the populations in the wards are too variable.

The calculation of the variogram of frequency was based on an isotropic type 
with a discrete lag interval of 8 km. From the variogram of frequencies we need 
to obtain the variogram of the underlying risk. Basically we want to extend the 
electoral ward-based geostatistical information to a measure of local risk across 
the region that is valid beyond the pre-defined centroids of the wards. We know 
how frequencies vary according to an electoral ward subdivision, but we need to 
know how the composite entity of risk is distributed. The risk would be obtained 
from frequency, which is a realization of a random variable that depends both on 
the underlying risk and on the number of children exposed to that risk. In other 
words we need an equation that related the variogram of frequency to the 
variogram of risk taking in account he fact that frequency is drawn from a 



binomial distribution. In fact the number of cases is a binomial variable that 
depends on local risk and on the number of children in the ward. The procedure 
used is as follows:

1) The conditional expectation, variance and product of frequency are 
expressed in terms of local risk and number of children per ward. 

2) From the relations expressed in the equations of (1) the conditional 
squared differences of the frequencies are obtained. 

3) The expected value of the square difference is expressed as a function of 
the variogram of risk, mean risk, number of children in the wards 
centered at (x) and (x+h), and variance of underlying risk. An important 
point to consider at this stage is that while the variances are variable from 
ward to ward and therefore the previous variograms cannot be considered 
in the strict sense, on the other hand the averages of the variances can be 
used in the estimation of the empirical variogram. 

4) The final step of this series of equations relates the estimated variogram of 
risk to the variogram of frequency: the risk variogram is equal to the 
frequency variogram minus a term that is a function of estimates of 
frequency mean, risk variance and an average of an arithmetic 
combination of population numbers of all pairs of wards.

5) In the estimation of the variogram of risk there is no variance of risk value 
available for substitution in the equation. An iterative process, by which 
the variance is first omitted, then estimated from the sill of the variogram, 
and finally re-input in the model, is repeated until the sill of the variogram 
and the variance converge to a single value.

A model variogram is fitted to the empirical variogram, using Whittle’s 
elementary correlation function, which approaches the sill asymptotically. The 
sill is therefore defined at 50 km range, or 95% of sill as a limit. The variogram of 
the frequency is much larger than the one of the risk, and presents a considerable 
nugget variance. The interpretation of the nugget is that it represents the error in 
estimating the risk per ward by the observed frequency. From the forms of 
variograms of risk and frequency it is possible to infer that the risk of a child 
developing cancer has a coarse patchy distribution, with patches 50 km across 
and with parts of the Region with considerable higher values than others.

The next task is to use the Kriging method to predict the risk at all areas in the 
region and to map it. In fact while we have information about risk from the 
frequency per ward, but that way we don’t include the information concerning 
correlated neighbors. A fine grid is set over the area and all intersections are 



estimated through kriging and then contoured. The Kriging method here used is 
co-kriging, because both the correlations of frequency and risk variables are used 
in the equations. In particular we need to estimate the risk, of which we have no 
values, using known frequency values:

1) Risk is expressed in terms of weighted prediction based on frequency, and 
its variance is the expected value of the squared difference between 
weighted frequency and risk. 

2) The co-kriging equations set to minimize the variance are based on the 
covariance of frequency and on the covariances between frequency and 
risk.

3) Since the cross variogram of the frequencies and the risk is equal to the 
variogram of the risk, also covariance of frequency is equal to the 
covariance of risk (except in the autocovariance case).

4) The maximum number of observations per estimate is set to 100 for 
accounting the minimal weight of the more distant values.

5) The estimates, originally for points, are to be considered as for areas equal 
to the electoral wards. The final map has a 2 km resolution and displays 
unbiased estimates with least variance.     

   
The resulting map has a relatively low variance, lowest in cities where the data 
points are most dense, therefore the risk map is reliable. The risk map has a 
patchy distribution as indicated previously by the variogram, with large risk in 
rural areas and small risk in urban areas. There is therefore a consistent 
difference between the risk map and the map of cases, which respectively show 
high risk in western and southwestern parts of the region and a concentration in 
the center-east.  

According to the risk variogram, risk of childhood cancer is strongly 
autocorrelated, indicating that wards with large risk occur near others with 
similarly large risk, in a patchy configuration with patches of 50 km (the range of 
the variogram). The regional pattern shows a concentration in rural areas away 
from urban centers, arising from the fact that children in rural areas are exposed 
to common diseases at an older age than their urban counterparts.

The research can be improved by extending the data sets for gaining greater 
confidence in the variograms, and by computing variograms over a variable 
support (in fact, electoral wards do not cover the same area), in order to obtain a 
final average variogram. The problem of georeferencing the healthy children can 
also be solved by using the 1991 census with archived addresses information.



This study is an example of how geostatistical analysis, point patterns and area 
analyses converge towards the same application. While the core of the study is 
geostatistical, based on co-kriging (even if it is a particular case, where the cross 
covariance is equalized to the autocovariance by analytical methods), the 
subdivision in wards is clearly a problem for lattice analysis, which in turn is 
solved as a point pattern problem with attributes, using the centroids as a 
summarizing spatial information for each area. The geostatistical core requires 
better data sets and a more sophisticated approach to analysis, as indicated 
above, but in essence prediction of risk based on covariance extends the set of 
solutions available for extracting information from data.

The paper does not offer great insight into the interpretation of the results, 
suggesting that the aim was only one of introducing the technique in a context 
that has never been exposed to that approach. A question might be what kind of 
implications the adoption of kriging as a prediction scheme of risk generates in 
identifying spatial patterns and environmental causes for the disease. In other 
words, can kriging predict a point sourced cluster of disease risk around a 
nuclear installation, or would it rather consider only the covariance over the 
random field without detecting localized features? While the quest for a 
clustered pattern might be using a weak approach to data analysis, the additional 
adoption of geostatistical methods might cause the assumption of the existence 
of clusters to fail in favor of a covariance distribution based approach, which 
cannot resolve any suspected features. This might have an impact on the political 
decisions about claiming for example a nuclear installation to be responsible of 
child leukemia.         
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